domingo, 16 de mayo de 2021

5.1 Introducción al modelo de referencia OSI.

MODELO OSI
Durante los años 60 y 70 se crearon muchas tecnologías de redes, cada una basada en un diseño específico de hardware. Estos sistemas eran construidos de una sola pieza, una arquitectura  monolítica. 
Los dispositivos físicos de conexión,  los protocolos del software y hardware usados en la comunicación 
Los programas  de aplicación realizan la comunicación y la interfaz hombre-máquina que permite al humano utilizar la red. Este modelo, que considera la cadena como un todo monolítico, es poco práctico, pues el más pequeño cambio puede implicar alterar todos sus elementos.
El diseño original de Internet del Departamento de Defensa Americano disponía un esquema de cuatro capas, aunque data de los 70 es similar al que se continúa utilizando:

Capa Física o de Acceso de Red: Es la responsable del envío de la información sobre el sistema hardware utilizado en cada caso, se utiliza un protocolo distinto según el tipo de red física
Capa de Red o Capa Internet: Es la encargada de enviar los datos a través de las distintas redes físicas que pueden conectar una máquina origen con la de destino de la información.  Los protocolos de transmisión, como el IP están íntimamente asociados a esta capa.
Capa de Transporte : Controla el establecimiento y fin de la conexión, control de flujo de datos, retransmisión de datos perdidos y otros detalles de la transmisión entre dos sistemas.  Los protocolos más importantes a este nivel son TCP y UDP (mutuamente excluyentes).
Capa de Aplicación: Conformada por los protocolos que sirven directamente a los programas de usuario, navegador, e-mail, FTP,TELNET etc.







sábado, 15 de mayo de 2021

5.2 Protocolos y estándares.

Protocolos y estándares.

PROTOCOLO

En el campo de las telecomunicaciones, un protocolo de comunicaciones es el conjunto de reglas normalizadas para la representación, señalización, autenticación y detección de errores necesario para enviar información a través de un canal de comunicación. Un ejemplo de un protocolo de comunicaciones simple adaptado a la comunicación por voz es el caso de un locutor de radio hablando a sus radioyentes.


Los protocolos de comunicación para la comunicación digital por redes de computadoras tienen características destinadas a asegurar un intercambio de datos fiable a través de un canal de comunicación imperfecto. 

Los protocolos de comunicación siguen ciertas reglas para que el sistema funcione apropiadamente
• Sintaxis: se especifica como son y cómo se construyen.
• Semántica: que significa cada comando o respuesta del protocolo respecto a sus parámetros/datos.
• Procedimientos de uso de esos mensajes: es lo que hay que programar realmente (los errores, como tratarlos).

Función De Un Protocolo

Cuando se realiza un intercambio de datos entre computadores, terminales y/u otros dispositivos se requieren las siguientes tareas: (similitud de conversación entre un profesor y un alumno)
1. El sistema fuente de información debe activar el camino directo de datos o bien proporcionar a la red de comunicación la identificación del sistema destino deseado. 
2. El sistema fuente debe asegurarse de que el destino está preparado para recibir los datos. 
3. La aplicación de transferencia de fichero en el origen debe asegurarse de que el programa gestor en el destino esta preparado para aceptar y almacenar el fichero para el usuario determinado
4. Si los formatos de los ficheros son incompatibles uno de los sistemas deberá realizar una operación de adecuación.


Para la comunicación entre dos entidades situadas en sistemas diferentes (entidad es cualquier cosa capaz de enviar y recibir información. Sistema es un objeto físico que contiene una o más entidades), es necesario la definición y utilización de un protocolo. 
Los protocolos se pueden definir como el conjunto de reglas que gobiernan el intercambio de datos entre dos entidades. 

 Esta estructura se denomina arquitectura de protocolos.
Los protocolos pueden ser:
Directo. Los datos e información de control pasan directamente entre las entidades sin intervención de un agente activo.
Indirecto. Las dos entidades no se pueden comunicar directamente sino a través de una red conmutada o de una interconexión de redes.
Monolítico. 
El protocolo no está estructurado en capas. El paquete debe incluir toda la lógica del protocolo.

Estructurado. El protocolo posee una estructura jerárquica, en capas. Entidades de nivel inferior ofrecen servicio a entidades de nivel superior. A todo el conjunto de hardware y software, se le denomina arquitectura.

Simétrico. La comunicación se realiza entre unidades paritarias.
Asimétrico. Las entidades que se conectan no son paritarias. Por ejemplo un proceso “cliente” y otro “servidor”, o para simplificar al máximo la lógica de una de las dos entidades, de forma que una asuma la operación (Por ejemplo en HDCL).
Estándares. El protocolo es extensivo a todas las fuentes y receptores de información.
No estándares. Protocolo particular. Se utiliza para situaciones de comunicación muy específicas.



Protocolos CAN


El Medio De Comunicación
El protocolo CAN al igual que el protocolo VAN, no impone soporte de comunicación. El medio utiliza un par de cables conductores.
Se denominará a los dos cables CAN H (CAN HIGH) CAN L (CAN LOW) Líneas (par) trenzadas(o)

La línea física que constituye el bus es llamada igualmente par diferencial. Estos pares diferenciales están trenzados con el fin de reducir las perturbaciones radioeléctricas (las radiaciones de campo emitidas por los cables se anulan).

La diferencia de potencial eléctrico entre estos dos cables permitirá codificar dos estados lógicos distintos:
CODIFICACION DE LAS INFORMACIONES


El protocolo CAN utiliza la codificación NRZ y MANCHESTER contrariamente al VAN que inserta un bit inverso cada 4 bits, el CAN utiliza el método del "bit stuffing" o bit de relleno. El bit invertido permitirá la sincronización del reloj del receptor provocando un frente ascendente o descendente. Después de cinco bits de mismo nivel, un bit de nivel inverso sin ningún significado es añadido.

Protocolos VAN


Este proceso permite:
• Limitación de las radiaciones emitidas,
• Compensación de los de calajes de masa,
• Muy buen comportamiento antes las perturbaciones (ver croquis).
• Funcionamiento en modo degradado si uno u otro de los cables está seccionado, en cortocircuito a positivo, o a masa.
• En el caso de pérdida de un cable, la electrónica compara el nivel de tensión de la señal respecto a un umbral, y decide si la señal se encuentra a 1 o a 0. 


Protocolo LIN BUS
• Controla la transmisión de datos y su velocidad. La unidad de control LIN maestra transmite el encabezamiento del mensaje (header, ver página 12).
• En el software se define un ciclo, según el cual se han de transmitir mensajes al LINBus y se especifica cuáles.
• Asume la función de traducción entre las unidades de control LIN abonadas al sistema del LIN-Bus local y el CAN-Bus de datos. De esa forma es la única unidad de control del LIN-Bus que va conectada a su vez al CAN-Bus.
• La diagnosis de las unidades de control LIN esclavas que lleva conectadas se realiza a través de la unidad de control LIN maestra.


ESTÁNDARES


X10: es un protocolo de comunicaciones para el control remoto de dispositivos eléctricos. Utiliza la línea eléctrica (220V o 110V) para transmitir señales de control entre equipos de automatización del hogar en formato digital. El problema es que este protocolo ha tenido que ser desestimado y ahora se utiliza el EIB.pl para la transmisión por la red eléctrica. Los dispositivos X10 que se comercializan son solo para uso individual y es complicado el enlazarlos para crear un autentico proyecto domótico. 

KNX/EIB: Bus de Instalación Europeo con más de 20 años y más de 100 fabricantes de productos compatibles entre sí.

ZigBee: Es el nombre de la especificación de un conjunto de protocolos de alto nivel de comunicación inalámbrica para su utilización con radiodifusión digital de bajo consumo, basada en el estándar IEEE 802.15.4 de redes inalámbricas de área personal (wireless personal área network, WPAN). 

Su objetivo son las aplicaciones que requieren comunicaciones seguras con baja tasa de envío de datos y maximización de la vida útil de sus baterías. Protocolo estándar, recogido en el IEEE 802.15.4, de comunicaciones inalámbrico. 

Los protocolos ZigBee están definidos para su uso en aplicaciones encastradas con requerimientos muy bajos de transmisión de datos y consumo energético.  Puede utilizarse para realizar control industrial, albergar sensores empotrados, recolectar datos médicos, ejercer labores de detección de humo o intrusos o domótica. 

La red en su conjunto utilizará una cantidad muy pequeña de energía de forma que cada dispositivo individual pueda tener una autonomía de hasta 5 años antes de necesitar un recambio en su sistema de alimentación.

OSGi:
Open Services Gateway Initiative. Especificaciones abiertas de software que permita diseñar plataformas compatibles que puedan proporcionar múltiples servicios.

LonWorks:
Plataforma estandarizada para el control de edificios, viviendas, industria y transporte.

Universal Plug and Play (UPnP):
Arquitectura software abierta y distribuida que permite el intercambio de información y datos a los dispositivos conectados a una red.



5.3 Características funcionales de los dispositivos.

Características funcionales de los dispositivos


El propósito principal de los medios de comunicación es, precisamente, comunicar, pero según su tipo de ideología pueden especializarse en; informar, educar, transmitir, entretener, formar opinión, enseñar, controlar, etc.


Positivas. Las características positivas de los medios de comunicación residen en que posibilitan que amplios contenidos de información lleguen a extendidos lugares del planeta en forma inmediata. Los medios de comunicación, de igual manera, hacen posible que muchas relaciones personales se mantengan unidas o, por lo menos, no desaparezcan por completo. Otro factor positivo se da en el ámbito económico: quien posea el uso de los medios puede generar un determinado tipo de consciencia sobre una especie de producto, es decir, puede generar su propia demanda, ya que los medios muchas veces cumplen la función de formadores de opinión. 

Entonces, visto desde el ámbito empresarial, es un aspecto ampliamente positivo al hacer posible el marketing y anuncios para el mundo.
Negativas. Las características negativas recaen en la manipulación de la información y el uso de la misma para intereses propios de un grupo específico.



5.4 Estándares de interfaces.

 Estándares de interfaces.

En telecomunicaciones y hardware, una interfaz es el puerto (circuito físico) a través del que se envían o reciben señales desde un sistema o subsistemas hacia otros. No existe una interfaz universal, sino que existen diferentes estándares (Interfaz USB, interfaz SCSI, etc.) que establecen especificaciones técnicas concretas (características comunes), con lo que la interconexión sólo es posible utilizando la misma interfaz en origen y destino. 


Así también, una interfaz puede ser definida como un intérprete de condiciones externas al sistema, a través de transductores y otros dispositivos, que permite una comunicación con actores externos, como personas u otros sistemas, a través de un protocolo común a ambos. Una interfaz es una Conexión física y funcional entre dos aparatos o sistemas independientes.

Los dispositivos de E/S se comunican por interrupciones con el procesador, si una interrupción es recibida, el procesador la atenderá con la rutina de interrupción correspondiente a dicha interrupción.

Un ordenador que usa E/S mapeados en memoria por lectura y escritura accede al hardware a través de la posición de memoria especifica, usando el mismo lenguaje ensamblador que el procesador usa para el acceso a memoria.



Los sistemas operativos y lenguajes de programación de alto nivel facilitan el uso separado de más conceptos y primitivas abstractas de E/S. Por Ejemplo: la mayoría de sistemas operativos proporcionan aplicaciones con el concepto de fichero. Los lenguajes de programación C y C++, y los sistemas operativos de la familia UNIX, tradicionalmente abstraen ficheros y dispositivos como streams, los cuales pueden ser leídos o escritos, o ambas cosas. La librería estándar de C proporciona funciones para la manipulación de streams para E/S.
Aplicaciones De La Interfaz (Controlador de periférico)

5.5 Mecanismos de detección y corrección de errores

MECANISMOS DE DETECCIÓN Y CORRECCIÓN DE ERRORES


Las redes de computadores deben ser capaces de transmitir datos de un dispositivo a otro con cierto nivel de precisión. Para muchas aplicaciones, el sistema debe garantizar que los datos recibidos son iguales a los trasmitidos. Sin embargo, siempre que una señal electromagnética fluye de un punto a otro, está sujeta a interferencias impredecibles debido al calor, el magnetismo y diversas formas de electricidad. Esta interferencia puede cambiar la forma o la temporización de la señal. Si la señal transporta datos binarios codificados, tales cambios pueden alterar su significado.

Las aplicaciones requieren entonces un mecanismo que permita detectar y corregir los posibles errores ocurridos durante la transmisión. Algunas aplicaciones tienen cierta tolerancia de errores (ej. transmisión de  audio/video).

Tipos de Errores


Antes  de  estudiar  los  mecanismos  que  permiten  la  detección  y/o  corrección  de  errores,  es importante entender cuáles son esos posibles errores.

 Error de Bit

Este término significa que únicamente un bit de una unidad de datos determinada (byte, carácter, paquete, etc.) cambia de 0 a 1 o de 1 a 0 [1][2]. Para comprender el impacto de este cambio, podemos imaginar que cada grupo de 8 bits es un carácter ASCII con un 0 añadido a la izquierda. Un error de bit podría alterar completamente el carácter ASCII enviado (ej. ‘A’: ASCII 65) y en el receptor se obtendría un carácter completamente diferente (ej. ‘I’: ASCII 73).

Error de Ráfaga

Significa que dos o más bits de la unidad de datos han sido alterados. Es importante notar que los errores de ráfaga no implican que se afecten bits consecutivos. La longitud de la ráfaga se mide desde el primer hasta el último bit incorrecto

Redundancia

Una vez que se conocen los tipos de errores que pueden existir, es necesario identificarlos. En un entorno de comunicación de datos no se tendrá una copia de los datos originales que permita comparar los datos recibidos para detectar si hubo errores en la transmisión. En este caso, no habrá forma de detectar si ocurrió un error hasta que se haya decodificado la transmisión y se vea que no tienen sentido los datos recibidos.

Detección vs. Corrección


La corrección de errores es más difícil que la detección. En la detección sólo se quiere determinar si ha ocurrido un error, existiendo dos posibles respuestas: sí o no. La corrección como tal es sencilla, consiste tan solo en invertir los valores de los bits erróneos; sin embargo, es necesario previamente determinar la cantidad de bits erróneos, y aún más importante la ubicación de los mismos dentro de la unidad de datos.

La corrección de errores se puede conseguir de dos formas. En la primera, cuando se descubre un error, el receptor puede pedir al emisor que retransmita toda la unidad de datos (BEC, Backwards Error Correction). Con la segunda, el receptor puede usar un código corrector de errores, que corrija automáticamente determinados errores (FEC, Forward Error Correction).

En teoría, es posible corregir cualquier error automáticamente en un código binario. Sin embargo, los códigos correctores son más sofisticados que los códigos detectores y necesitan más bits de redundancia. El número de bits necesarios para corregir un error de ráfaga es tan alto que en la mayoría de los casos su uso no resulta eficiente .

FEC (Forward Error Correction) vs. Retransmisión

Como se mencionó previamente, existen dos mecanismos para la corrección de errores:

1.   FEC: Forward Error Correction.
2.   BEC: Backwards Error Correction.

FEC es el proceso en el que una vez detectado el error, el receptor trata de determinar el mensaje original, usando los bits de redundancia. Para esto es necesario incluir una mayor cantidad de bits de redundancia en la unidad de datos. BEC o retransmisión es la técnica en la que el receptor detecta la ocurrencia del error y solicita al emisor que reenvíe el mensaje. Se repite la retransmisión del mensaje hasta que el receptor compruebe que el mensaje ha llegado sin error (es posible que un error no sea detectado y el mensaje sea interpretado como correcto).





5.1 Introducción al modelo de referencia OSI.

MODELO OSI Durante los años 60 y 70 se crearon muchas tecnologías de redes, cada una basada en un diseño específico de  h ardware. Estos sis...